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a b s t r a c t

Breast cancer is the most commonly diagnosed cancer among women. Convolutional neural networks
(CNN)-based mammogram classification plays a vital role in early breast cancer detection. However, it
pays too much attention to the lesions of mammograms and ignores the global characteristics of the
breast. In the process of diagnosis, doctors not only pay attention to the features of local lesions but
also combine with the comparison to the global characteristics of breasts. Mammogram images have a
visible characteristic, which is that the original image is large, while the lesions are relatively small. It
means that the lesions are easy to overlook. This paper proposes an automated multi-scale end-to-end
deep neural networks model for mammogram classification, that only requires mammogram images
and class labels (without ROI annotations). The proposed model generated three scales of feature
maps that make the classifier combine global information with the local lesions for classification.
Moreover, the images processed by our method contain fewer non-breast pixels and retain the small
lesions information as much as possible, which is helpful for the model to focus on the small lesions.
The performance of our method is verified on the INbreast dataset. Compared to other state-of-the-
art mammogram classification algorithms, our model performs the best. Moreover, the multi-scale
method is applied to the networks with fewer parameters that can achieve comparable performance,
while saving 60% of the computing resources. It shows that the multi-scale method can work for both
performance and computational efficiency.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, breast cancer is the most commonly diagnosed
ancer and the second leading cause of cancer death among
omen globally [1,2]. In China, the average age at diagnosing

or breast cancer is decreasing, and the number of breast can-
er patients is increasing annually [3]. Early detection and early
reatment are crucial to lowering the death rates of breast can-
er [4]. Fortunately, some imaging techniques, such as mammo-
ram screening and ultrasound examinations, are beneficial to
arly breast cancer detection. Mammogram screening has several
dvantages, including easy operating, affordable price, and sig-
ificantly better imaging results of calcified breast cancer, which
akes diagnosis easier. For these reasons, mammogram screen-

ng has become the most popular technology to diagnose breast
iseases in women over 40 years old [5].
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In general, the clinicians of the radiology department scan the
left and right breasts of patients from the craniocaudal (CC) and
mediolateral oblique (MLO) views. Hence, mammogram screen-
ing usually contains four images, from left-CC, right-CC, left-MLO,
and right-MLO views [6], respectively. Fig. 1 shows the example
of mammogram images with the four views.

Mammogram images reveal lots of information about the
breast, including the density, shape and size of the breast, as well
as the suspected lesions such as calcifications and masses, etc.
The mentioned information is beneficial to well-trained doctors
for making a preliminary diagnosis. Usually, some hospitals have
mammogram scanning equipment and operating clinicians but
are in a lack of well-trained doctors. Therefore, the development
of trained doctors-level computer-aided diagnosis (CAD) systems
to diagnose mammogram images will be of great benefit [4].

Mammogram classification is the most critical part of the CAD
systems. Traditional mammogram classification methods typi-
cally focus on constructing hand-crafted features to describe the
characteristics of breast cancer [7–9]. These features must be
carefully designed based on the region-of-interest (ROI) annota-
tions and the doctor’s experience. The defects of these approaches

can be summarized as follows. The first, ROI annotations require
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Fig. 1. Mammogram samples from fours views.
rained doctors to make pixel-level annotations on the image,
hich consumes a lot of effort. The second, the hand-crafted fea-
ures are limited by medical knowledge about breast cancer and
he precision of ROI annotations [10], which means that hand-
rafted features may not be able to describe the characteristics of
reast cancer precisely. The third, from the results reported [7–9],
he classification and generalization performances of traditional
ethods are not good enough for clinical use.
Recently, the CNN-based method has achieved great success

n computer vision and related research fields for its powerful
eature extraction ability. The CNN method has high potential
n mammogram image analysis, but the following challenges
emain [11–17].

(1) CNN tends to achieve great performance with a large
mount of data. But mammogram datasets have much fewer
amples than natural image datasets. For instance, INbreast [18]
s an open dataset of mammogram images and only has 410
mages. In contrast, ImageNet [19] has 14,197,122 images and
SCOCO [20] has 82,783 images. Therefore, it is difficult to train
CNN model that performs well on the mammogram dataset.
(2) The dimensions of mammogram images usually are higher

han those of natural images. The sizes of the images in INbreast
re about 2000 × 3000 pixels, whereas those in ImageNet and
SCOCO are about 300 × 300 pixels. CNN usually resizes the

nput images to a fixed size, such as 299 × 299 or 224 × 224. For
he raw mammogram images are too large, some information of
esions may be lost by directly resizing, which will result in that
NN cannot learn from these lesions.
(3) As can be seen in Fig. 1, there is a significant amount of

edundant region in the raw mammogram images. The lesions
nly exist in the breast, and the breast region only occupies less
han half of the whole picture. The redundant areas are not only
seless for classification but also interfere with model training.
(4) Doctors combine the features of the whole breast and

he suspected lesions in mammogram images for the diagnosis,
hile CNN usually relies on its powerful feature extraction abil-

ty to classify the natural pictures. Directly applying the CNN
odel to mammogram classification is difficult to achieve good
erformance [13,14,21].
(5) At present, current CNN models achieve excellent per-

ormance with ROI annotations-assisted training. However, ROI
abeling is expensive and not easy to obtain [22,23]. Moreover,
he performance of a CNN that training without ROI annotations
s not good enough for practical application [12,21]. Improving
he performance of classification models without ROI annotations
s full of challenges.

To deal with the mentioned challenges, this paper proposes
multi-scale CNN model for mammogram classification. The
odel consists of the breast region segmentation (BRS) module,

he feature extraction module, the multi-scale feature module,
nd the classifier module. The images preprocessed by the BRS
odule contain fewer non-breast (2) and (3) with a practical
olution. To make challenge (1) less challenging, random trans-
orms are performed on the input images firstly. Next, the dense
2

connection mechanism of DenseNet can avoid overfitting to some
degree, which is helpful for the training of the networks on the
small dataset. So the pre-trained DenseNet is used for the feature
extraction module. It learns from the mammogram images to
generate feature maps representing the calcifications and masses.
After that, the multi-scale module fuses these feature maps and
generates new ones at three scales. The three scale feature maps
represent the information of the whole breast and the suspected
lesions, which offers challenge (4) a feasible way. Its performance
is comparable to the model with ROI annotations-assisted train-
ing, and this can address challenge (5). Finally, this paper uses
a fully connected layer as the classifier. The classifier collects
multi-scale instead of single-scale feature maps, which helps the
classifier work better.

The main contributions of this paper are summarized as fol-
lows.

(1) Based on the analysis of the doctor’s diagnostic process and
the characteristics of mammogram images, an automated multi-
scale CNN model for mammogram classification is proposed in
this paper. This method only requires original mammogram im-
ages and the corresponding category labels (without ROI annota-
tions) and gets the state-of-the-art classification performance on
the INbreast dataset. The proposed model saves a lot of efforts of
labeling and makes the model more comfortable to apply.

(2) The multi-scale module is proposed to generate feature
maps at three scales, which provides the model with the informa-
tion of global breast and local lesions instead of only focuses on
the local lesions. Moreover, considering the finite computational
ability, the DenseNet [24] is replaced with the MobileNet [25],
which can save 60% of computing resources while maintaining
comparable performance.

(3) The BRS module is proposed to preprocess the raw mam-
mogram images based on the characteristics of mammogram
images. The processed images contain fewer non-breast pixels
and the image size is small, which helps the model to focus on
the breast region for better training.

2. Related work

In recent years, neural networks have been swiftly devel-
oped in theory and application [26–30], especially CNN. Since
AlexNet [31] won the championship in the ILSVRC2012 challenge,
CNN has attracted widespread attention from researchers. Subse-
quently, the structures of CNN, such as VGG Net [32], Inception
Net [33], ResNet [34] and DenseNet [24], were designed to be
deeper, which resulted in better feature extraction capabilities.
The development of these structures has promoted the applica-
tion of CNN in computer vision [35,36], especially for medical
image analysis [37–43]. Wang et al. [37] constructed automated
retinopathy of prematurity detection model using a CNN-based
method. This approach built identification and grading models
for two-stage learning and achieved great performance. Esteva
et al. [39] trained a CNN model to classify images of skin lesions
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s benign or malignant skin cancers. This model has achieved
he accuracy of board-certified dermatologists. Zhu et al. [42]
resented an automated lung CT cancer diagnostic system called
eepLung, which consists of nodule detection and classification
omponents. It surpassed the performance of experienced doctors
ased on image modality. These CNN methods have achieved
dvanced performance in the field of medical image analysis.
At present, CNN-based methods have also achieved many

reakthroughs in the mammogram classification. Li et al. [22]
roposed an end-to-end networks with fully convolutional layers
or mammogram classification. This structure is implemented
ith a fully convolutional layer and a removed pooling layer.
F+CNN [23] uses CNN to extract features from mammogram im-
ges and then uses a random forest as a classifier. These methods
enerally use mammogram images, ROI annotations, and category
abels, and achieve good performance. However, ROI annotations
equire a trained doctor to create pixel-level annotations on the
mage, which consumes a lot of human resources.

Hence, some works have also explored CNN methods with-
ut ROI annotations for mammogram classification. For example,
garwal et al. [12] used a pre-trained CNN model on ImageNet
nd fine-tuned the parameters and weights for mammogram
lassification. This is a relatively mainstream transfer learning
pproach and also very suitable for medical datasets. The sparse
IL method [21] was an end-to-end trained deep multi-instance
etworks for mass classification. It combined the sparse charac-
eristics of breast lesions and multi-instance learning methods. Li
t al. [44] used U-Net, which is pre-trained with medical images
o improve the performance of breast mass segmentation. Other
tudies [13,14] combined MLO and CC views to diagnose breast
ancer. However, the MLO and CC views of some datasets are
ot uniformly labeled but instead labeled separately. Domingues
t al. [15] improved model performance through preprocess-
ng the mammogram images, which is also an effective way to
nhance the performance of models in general.
The above methods improve mammogram classification per-

ormance by various techniques, including networks architecture
nnovation, data preprocessing, and transfer learning. However,
one of these approaches achieve comparable performance to
he method with the ROI annotations-assisted training. It im-
lies that ROI annotations have a substantial influence on the
lassification performance. In the study of classification with ROI
nnotations-assisted training, neural networks tend to directly
earn the difference between the ROI and non-ROI annotations
egion. It is a typical image classification that CNN is particularly
3

good at. In the absence of ROI annotations, CNN is required to
master skills in the diagnosis of mammogram lesions.

Fig. 2 shows the diagnostic process of the doctor and the pro-
posed model. A well-trained doctor’s diagnosis usually involves
four steps. Firstly, the doctor looks only at the breast region in
the image and collects the global features such as the density,
shape and size of the breast. Next, he or she looks for suspected
lesions regions with high breast density. And then, focusing on
these suspected lesions regions, the doctor identifies them as
calcifications or masses, which is depending on their shape and
size, etc. Finally, since the features of the breast vary from person
to person, the doctor will compare the features of the whole
breast and the suspected lesions. The process of comparison
mainly focuses on the following two parts. One is to compare the
density of the suspected regions and the surrounding regions. The
other is to compare the size and shape of the suspected regions
as well as the whole breast. According to the comparison results,
the doctor will make a preliminary diagnosis combined with their
own experience.

Based on the above description, two characteristics can be
summarized as follows. The first, the doctors ignore the non-
breast regions of the image, because these regions do not affect
the diagnosis. The second, the doctors combine with the features
of the whole breast and the suspected lesions to diagnose, and the
works mentioned are usually only focused on the characteristics
of local lesions.

The convolutional layer generates feature maps to represent
the characteristics of the local region. Because the convolution
kernel is tiny, so in general, it is a small region. The pooling
layer merges these features and lowering the dimensions of the
feature maps. Therefore, the pooling layer will inevitably lose
some subtle information. The fully connected layer is used as a
classifier. The above process is reasonable for the application of
natural image classification. For example, as long as CNN captures
a cat’s features, it can support the idea that a cat is in the
picture. By contrast, the process is inconsistent with the process
of classifying mammogram images.

For these reasons, a multi-scale module is employed to im-
prove CNN’s classifying process of mammogram images. Like a
doctor, it can focus on the global view and the local lesions’
information for diagnosis. As shown in Fig. 2, The large-scale,
mesoscale and small-scale features correspond to the processes
of focusing on the whole breast, looking for suspected lesions in
the breast and focusing on them, respectively. After collecting
the features of the whole breast and the suspected lesions, a
Fig. 2. The diagnostic process of doctor and the proposed model.
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Fig. 3. The structure of the proposed model.
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lassifier was applied to diagnose. In this paper, the spatial pyra-
id pooling method is taken as the multi-scale module, which
as proposed by he et al. [45]. The advantages of the proposed
ulti-scale approach can be summarized as follows. The first,
mall-scale global pooling retains smaller lesions information
s much as possible during pooling. The second, based on the
hree feature maps at different scales, the networks not only pay
ttention to the local lesions but also focus on the whole breast.
ompared with the current method, our method improves the
lassification performance without using ROI annotations.

. Methods

The networks structure of the proposed method is shown in
ig. 3. It consists of the following four modules.
(1) The original mammogram images are preprocessed by the

RS module. The module aims to crop out the background regions
hat are irrelevant for classification and improve the proportion
f effective pixels in the image.
(2) Pre-trained CNN is constructed to extract mammogram

eatures. DenseNet [24] and MobileNet [25] are taken as feature
xtraction modules, respectively,.
(3) To improve the diagnostic process of CNN, a multi-scale

odule is proposed to replace the last pooling layer of the CNN.
t generates three different scales of feature maps, which make
NN can focus on the information of the whole breast and the
uspected lesions for classifying.
(4) A fully connected layer is used as the classifier.
The data used in this paper contains mammogram images and
orresponding category labels M = (X, Y ), where X is the image

4

space and Y represents a two-class space. The mammogram
dataset has N samples, and for each sample in the dataset M , the
th image is defined as xi(i ∈ (1, 2 . . . ,N)). Its corresponding label
s yi.

The mammogram classification task can be formally denoted
s: F : X → P . The model takes the MLO or CC images as input,
nd the predicted category of the image is the output. P is the
redicted category space. For the i-th image xi in the dataset
, its corresponding predicted category is pi(i ∈ (1, 2 . . . ,N)).
ll images will fall into two categories: those with malignant
asses and those without any masses. The images with malig-
ant masses are defined as positive samples and the rest are
efined as negative samples.
Specifically, the formula can be defined in detail as follows:

: fC (fMF (fE(fBRS(X)))) → P, (1)

here fC , fMF , fE and fBRS are the classifier module, the multi-
cale module, the feature extraction module and the BRS module,
espectively. Among them, the DenseNet fDE and the MobileNet
ME are taken as the feature extraction module, respectively.

First, regardless of whether the image is an MLO view or CC
iew, the background of mammogram image is relatively large. As
hown in Fig. 4, the BRS module consists of three steps, including
reast edge detection, breast region cropping, and resizing the
mage to a standard size, such as 600 × 600 or 224 × 224 pixels.
he BRS module can be formally denoted as: fBRS : X → X∗, where
is original image space and X∗ represents the processed image

pace.
Compared to X , X∗ removes most of the redundant informa-

ion in the original images, which makes the feature extraction
Fig. 4. The BRS module.
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etworks focus on the breast region. The BRS module improves
he proportion of effective pixels of the input images.

Then, a feature extraction module is built. A pre-trained
enseNet121 was used to extract features, but only the convolu-
ional and pooling layers before its last pooling layers were used.
hese layers are fine-tuned to make them focus better on the
haracteristics of mammogram images. The feature extractor is
enoted as fDE , and for each image x∗ in X∗, fDE : x∗

→ xfm, xfm
represents the feature maps generated by the feature extraction
module.

Moreover, considering that DenseNet consumes a lot of com-
puting resources, which are scarce in some primary hospitals. It is
replaced by MobileNet, which only uses the convolutional layers
before its pooling layer as the feature extraction module. The
feature extractor of MobileNet is defined as fME , fME : x∗

→ xfm.
The structure of the multi-scale module is shown in Fig. 5. It

is added following the feature extraction module. In the multi-
scale module, the feature maps perform max-pooling on three
scales: the full image, a quarter image, and a one-sixteenth im-
age. Correspondingly, the three feature maps are generated from
three different scales. Different feature map scales correspond to
different views. Compared with the original pooling layer, which
outputs feature maps at one scale, the multi-scale module obtains
16 small, four middle and one large feature maps. The large one
has a global view that corresponds with the doctor’s observation
of the whole mammogram image. The smaller feature maps focus
on small views, corresponding with the doctor’s observations of
local suspected lesions, and avoids the problem of losing little
lesions information during the pooling process. The mesoscale
feature map connects these two scales, corresponding with the
doctor looking for suspected lesions in the breast. Hence, the pro-
posed CNN has both a global view and local lesions information
when classifying images, which improves model performance.
The multi-scale module is denoted as fMF , for each feature map
xfm, fMF : xfm → xmfm, xmfm represents the feature maps generated
by the feature extraction module.

Finally, the classifier is constructed of a fully connected layer
and the sigmoid activation function, which can be formally de-
noted as: fC : xmfm → p, where xmfm is the feature vector
generated by the multi-scale module, and p is the predicted
category corresponding to this image.

The loss function of the proposed model is:

L = −
1
N

N∑
[yi · log pi + (1 − yi) · log (1 − pi)] , (2)
i=1

5

where yi ∈ {0, 1} is the label of input xi(1 is the label of a positive
sample), and pi is the prediction of input xi.

The pseudocode of the multi-scale neural networks algorithm
is given in Algorithm 1.

Algorithm 1 Framework of multi-scale neural networks model.

Input: The raw mammogram images xi(i ∈ (1, 2 . . . ,N))
utput: The prediction of input images xi(i ∈ (1, 2 . . . ,N))
1: ending epochs = 200
2: Initialize the model using pre-trained parameters
3: while training epochs < ending epochs do
4: for a mammogram images x in dataset M do
5: Preprocessing images, fBRS : x → x∗

6: Extracting features via CNN, fDE : x∗
→ xfm

7: Generating multi-scales features, fMF : xfm → xmfm
8: Classification, fC : xmfm → p
9: Updating gradients with back propagation algorithm
0: end for
1: end while
2: while training epochs = ending epochs do
3: Save the model and parameters
4: end while

4. Experiments

4.1. Results

The proposed method is evaluated on the public dataset IN-
breast [18,46], which contains multiple view images of 115 cases
for a total of 410 images. Of these, 116 images containing be-
nign or malignant masses are defined as positive samples. While
the rest of them are defined as negative samples. Compared to
other mammogram datasets, such as the mini-MIAS [47] and
DDSM [48] dataset, INbreast’s images are original images with
higher quality. The images in the dataset are full-field digital
mammograms with precise annotations and include several types
of lesions (masses, calcifications, asymmetries, and distortions).
However, this study uses only the original image and category
labels (without ROI annotations).

Table 1 lists the training details. To lowering overfitting, all
mammogram images are randomly rotated from −30 degrees to
+30 degrees during the training. Because the CNN models have
been trained on ImageNet, this study uses the Adam update rules
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able 1
raining details.
Rotated angle −30∼30
Learning rate 4 × 10−5

Decay rate 0.98
Batch size 16
Epochs 200
Input sizes 600 × 600 and 224 × 224

and initializes a tiny learning rate of 4 × 10−5. The learning rate
ecays at a rate of 0.98 every five epochs. The model will stop
raining at the 200th epoch. The performance of the proposed
ethods is evaluated by five-fold cross-validation with classifica-

ion accuracy (ACC) and the area under the curve (AUC). Besides,
he recall (also called the true positive rate) and precision are
alculated [49]. The criteria are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN

recall =
TP

TP + FN

precision =
TP

TP + FP

(3)

where TP, TN, FP, FN are the number of true positives, true
negatives, false positives and false negatives, respectively.

Statistical analysis of the accuracy of the model is performed,
and the statistical significance level is set to α = 0.05. There are
ignificant differences between the models if p < 0.05, and no
ignificant differences if p > 0.05.

able 2
ompared with the state of the art models.
Method ACC(%) AUC p-value ROI

Proposed DenseNet+MS+BRS 96.34 0.9713 0.015 N
Proposed MobileNet+MS+BRS 95.12 0.9653 0.029 N
Sparse MIL [21] 90 0.8586 N/A N
FCN [22] ** 0.96 N/A Y
RF+CNN [23] 95 0.91 N/A Y

Table 2 compares the performance of the proposed method
ith those of some state-of-the-art methods. The results show
hat our model achieves the best performance. Sparse MIL [21] is
model without ROI annotations-assisted training. Although it is
n automated model, but it does not perform well. RF+CNN [23]
nd FCN [22] use the ROI annotations-assisted training and per-
orm well. However, they are semi-automatic or manual models
hat are difficult to be applied in clinical practice. The p-value
ndicates the difference between the proposed methods and the
parse MIL model. The results show that there are significant
ifferences between the proposed models and the sparse MIL
odel.
The proposed methods with DenseNet achieve a recall of

5.24% and a precision of 90.91% on a test set. The proposed
ethods with MobileNet achieve a recall of 95.24% and a preci-
ion of 86.97% on a test set. Both of the proposed models achieved
igh recall, which means that our models are very good at detect-
ng positive samples. This is clinically meaningful, as few positive
amples are missed diagnoses. MobileNet has a lower precision,
hich means that it is easier to classify negative samples into
ositive ones. Its poor feature extraction ability leads to instability
erformance.
For the reason that the proposed model is based on the com-

ination of global information and local information, rather than
ust focusing on local features for diagnose. The multi-scale model
ithout ROI annotations-assisted training performs better than

he other state-of-the-art models.

6

4.2. Ablation experiments

Next, the results of several ablation experiments are present.

Table 3
Performance of the proposed multi-scale module.
Image size 224 × 224 600 × 600

Performance ACC(%) AUC ACC(%) AUC

MobileNet 84.14 0.8250 92.68 0.8774
MobileNet+MS 91.46 0.9218 95.12 0.9460
DenseNet 86.59 0.8667 90.24 0.9185
DenseNet+MS 93.90 0.9355 95.12 0.9677

The first ablation experiment verifies the performance of the
multi-scale module (MS) and the effect of the size of input image
on the model. Table 3 shows that the performances of the pre-
trained DenseNet and MobileNet on INbreast with 224 × 224
mages as input are not very good. However, if the multi-scale
odules are incorporated into the models, both the ACC and
UC are substantially improved. DenseNet with the multi-scale
odule and 224 × 224 input yields an ACC of 93.90% and AUC
f 0.9355. These results imply that the multi-scale module pro-
uces multi-scale feature maps that help the classifier to merge
global view with local information. This is a very effective way
o improve mammogram classification performance.

In the four groups of comparison experiments, model per-
ormances with 600 × 600 images are better than those with
24 × 224 images. Even if DenseNet and MobileNet are used
ithout any enhancements, they also perform well. These results

ndicate that the quality of the mammogram images has a certain
mpact on the performance. In this group of experiments, the best
erformance model is obtained by the DenseNet with the multi-
cale module on 600 × 600 images (ACC = 95.12% and AUC =
.9677).
The next verifies the effectiveness of the proposed BRS mod-

le. This part of the experiments chose DenseNet and MobileNet
ith the multi-scale module as the base models. The test samples
re images processed by the BRS module.

able 4
erformance of the proposed BRS module.
Image size 224 × 224 600 × 600

Performance ACC(%) AUC ACC(%) AUC

MobileNet+MS 91.46 0.9218 95.12 0.9460
MobileNet+MS+BRS 92.68 0.9390 95.12 0.9653
DenseNet+MS 93.90 0.9355 95.12 0.9677
DenseNet+MS+BRS 94.51 0.9492 96.34 0.9713

As one can see from Table 4, the performance of the model is
slightly improved by using the BRS module. The ACC is 96.34% and
AUC is 0.9713 on 600 × 600 images. If the size of the image input
is 224 × 224 pixels, the performance is slightly lower (ACC =
92.68% and AUC = 0.9355). These results show that the redundant
regions of the background hurt the model’s mammogram classi-
fication performance, and the proposed method is very helpful to
solve it.

Fig. 6 shows the performance improvement of the multi-
scale module and BRS module. Figs. 6(a) and 6(b) show the
performance improvement of MobileNet, and Figs. 6(c) and 6(d)
show the DenseNet’s improvement. Regardless of whether the
networks are DenseNet or MobileNet or whether the input is
224 × 224 or 600 × 600, the multi-scale and BRS modules are
effective for mammogram classification. The multi-scale module
has a substantial performance improvement on the four models,
whereas the BRS module has a certain amount of improvement

based on the multi-scale module.
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Fig. 6. Model performance comparison.
Table 5
Model performance comparison.
Image size 600 × 600

Model DenseNet+MS+BRS MobileNet+MS+BRS

Number of parameters 7,038,529 2,259,165
Time of one epoch 62S 26S
ACC(%) 96.34 95.12
AUC 0.9713 0.9653

Table 5 and Fig. 7 compare the performance of DenseNet
nd MobileNet along with the multi-scale and BRS modules.
he MobileNet’s ACC and AUC are slightly lower than those of
enseNet, but MobileNet’s parameters and computing time are
ubstantially lower. This experiment aims to explore how to
chieve good model performance under the condition of limited
omputing resources. MobileNet can save 60% of the parameters
nd computing time with only a slight drop in performance. It
ay hence be a good choice for hospitals with limited computing

esources.
The effectiveness of the proposed method is verified according

o the above experiments. To begin with, it is very effective to
imulate the doctor’s diagnosis by the multi-scale module, which
reatly improves the classification performance. Secondly, the
riginal images processed by the BRS module make the model
an better focus on the breast region and further improve the
erformance. Finally, MobileNet may has a slightly weaker fea-
ure extraction capability than DenseNet, but it still achieves
xcellent performance when combined with the multi-scale and
RS modules. Our model has shown to achieve state-of-the-art
lassification performance on the INbreast dataset.
7

Fig. 7. Performance comparison between MobileNet and DenseNet combined
with MS and BRS modules.

5. Conclusion

Based on the analysis of the doctor’s diagnostic process and
the characteristics of mammogram images, an automated multi-
scale CNN model for mammogram classification is proposed in
this paper. The diagnosis requires to combine features of global
breast and suspected lesions. Hence, the multi-scale method is
proposed to generates the multi-scale feature maps, which makes
CNN not only pay attention to the features of the local lesions,
but also combine with the comparison to the global features of
breasts. The BRS module is proposed to preprocess the raw mam-
mogram images based on the characteristics of mammogram
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mages. The processed images contain fewer non-breast pixels
nd the size of them is small, which contributes to the model
o focus on the breast region. The proposed method achieves
xcellent classification performance and gets the state-of-the-
rt classification performance on the INbreast dataset. Moreover,
he multi-scale approach is applied to the networks with fewer
arameters not only can achieve comparable performance but
lso save 60% of the computing resources. In summary, the multi-
cale method can work for both performance and computational
fficiency.
For future research, it is promising to extend the current work

n the following: (1), the multi-scale methods can be applied
n multi-view mammogram classification tasks since mammo-
rams are photographed from four views. (2), the multi-scale
ethods can be applied to the low-quality mammogram images
nd improve the performance. (3), the ROI annotation can be
ombined with the multi-scale methods to train a reliable mass
etection model. Besides, the multi-scale methods should be
enerally applicable to the studies that require a combination of
lobal and local features. And our methods are also applicable to
arge datasets to improve performance.
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